Оксигенотерапия дома
С появлением современных концентраторов кислорода, стало возможным проводить процедуры дома. Для этого необходим концентратор кислорода (кислород отфильтровывается из обычного воздуха) и кислородная маска или назальные канюли. В большинстве случаев достаточно производительности оборудования до 5 л/минуту. Длительность процедуры обычно 10-30 минут.
Применение концентраторов кислорода очень безопасно, по сравнению с баллонами кислорода. И часто достаточно брать в аренду концентратор кислорода, т.к. это будет выгоднее покупки, а курс процедур надо делать периодически.
Химические свойства[править]
Кислород относится к главной подгруппе VI группы периодической системы элементов. Его порядковый номер 8.
Молекула кислорода состоит из двух атомов. Химическая связь ковалентная. Упрощенная структурная формула: O = O.
Существует также высокоэнергетическая синглетная форма молекулы кислорода. Она очень химически активна, и быстро реагирует с органическими соединениями. Синглетный кислород образуется в процессе фотосинтеза, и иммунной системой. Он также возникает в тропосфере вследствие фотолиза озона.
Имея во внешней электронной оболочке шесть электронов, атомы кислорода энергично присоединяют от атомов других элементов два электрона, которых им не хватает для завершения валентной оболочки, и превращаются в негативные двухвалентные ионы:
O + 2e = O2-
При этом кислород проявляет свои окислительные свойства. Из всех химических элементов он является одним из сильнейших окислителей и уступает в этом только фтору. Кислород непосредственно соединяется со всеми элементами, за исключением инертных газов, галогенов и благородных металлов. Химическая активность кислорода возрастает с повышением температуры.
4Na + O2 = 2Na2O
Кислород хорошо растворим в органических растворителях, поглощается тонкими порошками металлов, угля. Образует соединения со всеми элементами, кроме гелия, аргона и неона. На основе типов и свойств кислородных соединений построена классификация неорганических соединений. С металлами и неметаллами кислород образует оксиды соединений, с щелочными металлами, кроме лития, — пероксиды. Взаимодействие веществ с кислородом значительно ускоряется при нагревательной действия электрических разрядов, под давлением, при наличии катализаторов, особенно воды. В смеси с горючими газами и паром, с тонкими порошками многих металлов и органических веществ газообразный кислород образует взрывчатые смеси. Он легко окисляет органические соединения.
CH3CH2OH + 3O2 = 2CO2 + 3H2O
Преимущества кислородного концентратора
Главными плюсами медицинского оборудования являются: безопасность методики; безвредность адсорбентов; возможность автоматизации процедуры; высокая чистота кислорода; бесцветный газ вырабатывается с помощью молекулярной фильтрации; уход от использования небезопасных баллонов со сжатым газом.
Покупая аппарат для домашнего лечения, нужно обратить внимание на его мощность, насыщенность потока кислородом, страну-производителя, функциональность, наличие дополнительных функций, обеспечивающих легкость эксплуатации, монитора и пульта для управления прибором на расстоянии
Это важно, ведь вы покупаете не разовую вещь, которую не жалко выбросить в случае несоответствия вашим ожиданиям. Поэтому отдавайте предпочтения более дорогим моделям и делайте покупки на сайтах профессиональных компаний, специализирующихся на медицинском оборудовании.
Обязательно следует ознакомиться с гарантией
Обычно она составляет 1-2 года
Поэтому отдавайте предпочтения более дорогим моделям и делайте покупки на сайтах профессиональных компаний, специализирующихся на медицинском оборудовании.
Обязательно следует ознакомиться с гарантией. Обычно она составляет 1-2 года.
- Источники
- Жесткова М.А., Овсянников Д.Ю., Даниэл-Абу М. Длительная домашняя кислородотерапия у детей. Учебно-методическое пособие для врачей и родителей в вопросах и ответах // Неонатология: новости, мнения, обучение. 2019. Т. 7. № 4. С. 93–102. doi: 10.24411/2308-2402-2019-14008
- Авдеев С.Н. Длительная кислородотерапия при хронической дыхательной недостаточности // Интенсивная терапия в пульмонологии : монография / под ред. А.Г. Чучалина) : в 2 т. М. : АТМО, 2015. Т. 2. C. 228–250.
Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru
Автор статьи:
Извозчикова Нина Владиславовна
Специальность: инфекционист, гастроэнтеролог, пульмонолог.
Общий стаж: 35 лет.
Образование: 1975-1982, 1ММИ, сан-гиг, высшая квалификация, врач-инфекционист.
Другие статьи автора
Редактор статьи:
Момот Валентина Яковлевна
Специальность: Онкология.
Место работы: Институт экспериментальной патологии, онкологии и радиобиологии им. Р. Е. Кавецкого НАН Украины.
Все отредактированные статьи редактора
Будем признательны, если воспользуетесь кнопочками:
Описание[править]
Кислород — буквально «тот, что порождает кислоту». Русское слово восходит к М. В. Ломоносову и является калькой французского слова oxygène, предложенного А. Лавуазье (от др.-греч. ὀξύς — «кислый» и γεννάω — «рождаю»).
Атомный номер кислорода — 8; атомная масса — 15,9994. Кислород образует соединения со всеми элементами, кроме гелия, аргона и неона. При нормальных условиях кислород — газ, состоящий из двухатомных молекул. При 90,18 К кислород конденсируется в бледно-голубую жидкость, при 54,36 К — затвердевает. Есть и другие аллотропные формы кислорода, в частности трехатомный кислород (формула O3) называется озон — при нормальных условиях газ голубого цвета со специфическим запахом.
Плотность жидкого кислорода — 1,144; температура плавления составляет −218 ° C, температура кипения составляет −183 ° C.
С некоторыми металлами кислород образует пероксиды, надпероксиды, озониды, а с горючими газами — взрывчатые смеси.
Элемент кислород занимает третье место после водорода и гелия по распространенности в Вселенной. Он — самый распространенный химический элемент на Земле — 47 % массы земной коры, 85,7 % массы гидросферы, 23,15 % массы атмосферы, 79 % и 65 % массы растений и животных соответственно. За объемом кислород занимает 92 % объема земной коры. Известно около 1400 минералов, содержащих кислород, главные из них — кварц, полевые шпаты, слюда, глинистые минералы, карбонаты. Более 99,9 % кислорода Земли находится в связанном состоянии. Кислород — фактор, который регулирует распределение элементов в планетарном масштабе. Содержание его с глубиной закономерно уменьшается. Количество кислорода в магматических породах меняется от 49 % в гранитах до 38−42 % в дунитах и кимберлитах. Содержание кислорода в метаморфических породах соответствует глубине их формирования: от 44 % в эклогитах 48 % в кристаллических сланцах. Максимум кислорода — в осадочных породах — 49−51 %. Исключительную роль в геохимических процессах играет свободный кислород — молекулярный кислород, значение которого определяется его высокой химической активностью, большой миграционной способностью и постоянным, относительно высоким содержанием в биосфере, где он не только расходуется, но и воспроизводится. Считается, что свободный кислород появился в протерозое в результате фотосинтеза.
В гипергенных процессах кислород — один из основных агентов, он окисляет сероводород и низшие оксиды. Кислород определяет поведение многих элементов: повышает миграционную способность халькофилов, окисляя сульфиды до подвижных сульфатов, снижает подвижность железа и марганца, осаждая их в виде гидроксидов и вызывая тем самым их разделение. В водах океана содержание кислорода меняется: летом океан отдает кислород в атмосферу, зимой поглощает его. Полярные регионы обогащены кислородом
Важное геохимическое значение имеют соединения кислорода, в частности вода.
Основной промышленный метод получения кислорода — разделение воздуха методом глубокого охлаждения. Как побочный продукт кислород получают при электролизе воды. Разработан способ получения кислорода методом выборочной диффузии газов через молекулярные сита. Газообразный кислород применяется в металлургии для интенсификации доменных и сталеплавильных процессов, при выплавке цветных металлов в шахтных печах, бессемеровании штейнов и др. (Более 60 % потребляемого кислорода); как окислитель во многих химических производствах; в технике — при сварке и резке металлов; при подземной газификации угля и т. п.; озон — при стерилизации питьевой воды и дезинфекции помещений. Жидкий кислород используют как окислитель для некоторых разновидностей ракетного топлива.
Химические свойства кислорода
Кислород поддерживает горение.
Горение — б
ыстрый процесс окисления вещества, сопровождающийся выделением большого количества теплоты и света.
Чтобы доказать, что в склянке находится кислород, а не какой-то другой газ, надо в склянку опустить тлеющую лучинку. В кислороде тлеющая лучинка ярко вспыхивает. Горение различных веществ на воздухе – это окислительно-восстановительный процесс, в котором окислителем является кислород. Окислители – это вещества, «отбирающие» электроны у веществ-восстановителей. Хорошие окислительные свойства кислорода можно легко объяснить строением его внешней электронной оболочки.
Валентная оболочка кислорода расположена на 2-м уровне – относительно близко к ядру. Поэтому ядро сильно притягивает к себе электроны. На валентной оболочке кислорода
2s
2
2p
4
находится 6 электронов. Следовательно, до октета недостает двух электронов, которые кислород стремится принять с электронных оболочек других элементов, вступая с ними в реакции в качестве окислителя.
Кислород имеет вторую (после фтора) электроотрицательность в шкале Полинга. Поэтому в подавляющем большинстве своих соединений с другими элементами кислород имеет
отрицательную
степень окисления. Более сильным окислителем, чем кислород, является только его сосед по периоду – фтор. Поэтому соединения кислорода с фтором – единственные, где кислород имеет положительную степень окисления.
Итак, кислород – второй по силе окислитель среди всех элементов Периодической системы. С этим связано большинство его важнейших химических свойств.
С кислородом реагируют все элементы, кроме Au, Pt, He, Ne и Ar, во всех реакциях (кроме взаимодействия со фтором) кислород — окислитель.
Кислород легко реагирует с щелочными и щелочноземельными металлами:
4Li + O
2
→ 2Li
2
O,
2K + O
2
→ K
2
O
2
,
2Ca + O
2
→ 2CaO,
2Na + O
2
→ Na
2
O
2
,
2K + 2O
2
→ K
2
O
4
Мелкий порошок железа ( так называемого пирофорного железа) самовоспламеняется на воздухе, образуя Fe
2
O
3
, а стальная проволока горит в кислороде, если ее заранее раскалить:
3 Fe + 2O
2
→ Fe
3
O
4
2Mg + O
2
→ 2MgO
2Cu + O
2
→ 2CuO
С неметаллами (серой, графитом, водородом, фосфором и др.) кислород реагирует при нагревании:
S + O
2
→ SO
2
,
C + O
2
→ CO
2
,
2H
2
+ O
2
→ H
2
O,
4P + 5O
2
→ 2P
2
O
5
,
Si + O
2
→ SiO
2
, и т.д
Почти все реакции с участием кислорода O
2
экзотермичны, за редким исключением, например:
N
2
+ O
2
→
2NO – Q
Эта реакция протекает при температуре выше 1200
o
C или в электрическом разряде.
Кислород способен окислить сложные вещества, например:
2H
2
S + 3O
2
→ 2SO
2
+ 2H
2
O (избыток кислорода),
2H
2
S + O
2
→ 2S + 2H
2
O (недостаток кислорода),
4NH
3
+ 3O
2
→ 2N
2
+ 6H
2
O (без катализатора),
4NH
3
+ 5O
2
→ 4NO + 6H
2
O (в присутствии катализатора Pt ),
CH
4 (метан)
+ 2O
2
→ CO
2
+ 2H
2
O,
4FeS
2 (
пирит
)
+ 11O
2
→ 2Fe
2
O
3
+ 8SO
2
.
Известны соединения, содержащие катион диоксигенила O
2
+
, например, O
2
+
[PtF
6
]
—
(успешный синтез этого соединения побудил Н. Бартлетта попытаться получить соединения инертных газов).
Озон
Озон химически более активен, чем кислород O
2
. Так, озон окисляет иодид — ионы I
—
в растворе Kl:
O
3
+ 2Kl + H
2
O = I
2
+ O
2
+ 2KOH
Озон сильно ядовит, его ядовитые свойства сильнее, чем, например, у сероводорода. Однако в природе озон, содержащийся в высоких слоях атмосферы, выполняет роль защитника всего живого на Земле от губительного ультрафиолетового излучения солнца. Тонкий озоновый слой поглощает это излучение, и оно не достигает поверхности Земли. Наблюдаются значительные колебания в толщине и протяженности этого слоя с течением времени (так называемые озоновые дыры) причины таких колебаний пока не выяснены.
Применение кислорода O
2
: для интенсификации процессов получения чугуна и стали, при выплавке цветных металлов, как окислитель в различных химических производствах, для жизнеобеспечения на подводных кораблях, как окислитель ракетного топлива (жидкий кислород), в медицине, при сварке и резке металлов.
Применение озона О
3
:
для обеззараживания питьевой воды, сточных вод, воздуха, для отбеливания тканей.
Оксиды. Классификация, свойства, получение, применение
Оксиды — это неорганические соединения, состоящие из двух химических элементов, одним из которых является кислород в степени окисления -2. Единственным элементом, не образующим оксид, является фтор, который в соединении с кислородом образует фторид кислорода. Это связано с тем, что фтор является более электроотрицательным элементом, чем кислород.
Данный класс соединений является очень распространенным. Каждый день человек встречается с разнообразными оксидами в повседневной жизни. Вода, песок, выдыхаемый нами углекислый газ, выхлопы автомобилей, ржавчина — все это примеры оксидов.
Классификация оксидов
Все оксиды, по способности образовать соли, можно разделить на две группы:
- Солеобразующие оксиды (CO2, N2O5,Na2O, SO3 и т. д.)
- Несолеобразующие оксиды(CO, N2O,SiO, NO и т. д.)
В свою очередь, солеобразующие оксиды подразделяют на 3 группы:
- Основные оксиды — (Оксиды металлов — Na2O, CaO, CuO и т д)
- Кислотные оксиды — (Оксиды неметаллов, а так же оксиды металлов в степени окисления V-VII — Mn2O7,CO2, N2O5, SO2, SO3 и т д)
- Амфотерные оксиды (Оксиды металлов со степенью окисления III-IV а так же ZnO, BeO, SnO, PbO)
Данная классификация основана на проявлении оксидами определенных химических свойств. Так, основным оксидам соответствуют основания, а кислотным оксидам — кислоты.
Кислотные оксиды реагируют с основными оксидами с образованием соответствующей соли, как если бы реагировали основание и кислота, соответствующие данным оксидам:Аналогично, амфотерным оксидам соответствуют амфотерные основания, которые могут проявлять как кислотные, так и основные свойства:Химические элементы проявляющие разную степень окисления, могут образовывать различные оксиды. Чтобы как то различать оксиды таких элементов, после названия оксиды, в скобках указывается валентность.
CO2 – оксид углерода (IV)
N2O3 – оксид азота (III)
Физические свойства оксидов
Оксиды весьма разнообразны по своим физическим свойствам. Они могут быть как жидкостями (Н2О), так и газами (СО2, SO3) или твёрдыми веществами (Al2O3, Fe2O3). Приэтом оснОвные оксиды, как правило, твёрдые вещества. Окраску оксиды также имеют самую разнообразную — от бесцветной (Н2О, СО) и белой (ZnO, TiO2) до зелёной (Cr2O3) и даже чёрной (CuO).
Химические свойства оксидов
Некоторые оксиды реагируют с водой с образованием соответствующих гидроксидов (оснований):Основные оксиды реагируют с кислотными оксидами с образованием солей:Аналогично реагируют и с кислотами, но с выделением воды:Оксиды металлов, менее активных чем алюминий, могут восстанавливаться до металлов:
Кислотные оксиды в реакции с водой образуют кислоты:Некоторые оксиды (например оксид кремния SiO2) не взаимодействуют с водой, поэтому кислоты получают другими путями.
Кислотные оксиды взаимодействуют с основными оксидами, образую соли:Таким же образом, с образование солей, кислотные оксиды реагируют с основаниями:Если данному оксиду соответствует многоосновная кислота, то так же может образоваться кислая соль:Нелетучие кислотные оксиды могут замещать в солях летучие оксиды:
Как уже говорилось ранее, амфотерные оксиды, в зависимости от условий, могут проявлять как кислотные, так и основные свойства. Так они выступают в качестве основных оксидов в реакциях с кислотами или кислотными оксидами, с образованием солей: И в реакциях с основаниями или основными оксидами проявляют кислотные свойства:
Получение оксидов
Оксиды можно получить самыми разнообразными способами, мы приведем основные из них.
Большинство оксидов можно получить непосредственным взаимодействием кислорода с химических элементом: При обжиге или горении различных бинарных соединений:Термическое разложение солей, кислот и оснований :Взаимодействие некоторых металлов с водой:
Применение оксидов
Оксиды крайне распространены по всему земному шару и находят применение как в быту, так и в промышленности. Самый важный оксид — оксид водорода, вода — сделал возможной жизнь на Земле. Оксид серы SO3 используют для получения серной кислоты, а также для обработки пищевых продуктов — так увеличивают срок хранения, например, фруктов.
Оксиды железа используют для получения красок, производства электродов, хотя больше всего оксидов железа восстанавливают до металлического железа в металлургии.
Оксид кальция, также известный как негашеная известь, применяют в строительстве. Оксиды цинка и титана имеют белый цвет и нерастворимы в воде, потому стали хорошим материалом для производства красок — белил.
Оксид углерода CO2, который выделяют при дыхании все живые организмы, используется для пожаротушения, а также, в виде сухого льда, для охлаждения чего-либо.
Химические свойства
Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:
- 4Li+O2→2Li2O{\displaystyle ~{\mathsf {4Li+O_{2}\rightarrow 2Li_{2}O}}}
- 2Sr+O2→2SrO{\displaystyle ~{\mathsf {2Sr+O_{2}\rightarrow 2SrO}}}
Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:
- 2NO+O2→2NO2↑{\displaystyle ~{\mathsf {2NO+O_{2}\rightarrow 2NO_{2}\uparrow }}}
Окисляет большинство органических соединений:
- CH3CH2OH+3O2→2CO2+3H2O{\displaystyle ~{\mathsf {CH_{3}CH_{2}OH+3O_{2}\rightarrow 2CO_{2}+3H_{2}O}}}
При определённых условиях можно провести мягкое окисление органического соединения:
- CH3CH2OH+O2→CH3COOH+H2O{\displaystyle ~{\mathsf {CH_{3}CH_{2}OH+O_{2}\rightarrow CH_{3}COOH+H_{2}O}}}
Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором (см. ниже ).
Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.
Например, пероксиды получаются при сгорании щелочных металлов в кислороде:
- 2Na+O2→Na2O2{\displaystyle ~{\mathsf {2Na+O_{2}\rightarrow Na_{2}O_{2}}}}
Некоторые оксиды поглощают кислород:
- 2BaO+O2→2BaO2{\displaystyle ~{\mathsf {2BaO+O_{2}\rightarrow 2BaO_{2}}}}
По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:
- H2+O2→H2O2{\displaystyle ~{\mathsf {H_{2}+O_{2}\rightarrow H_{2}O_{2}}}}
В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O−2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:
- Na2O2+O2→2NaO2{\displaystyle ~{\mathsf {Na_{2}O_{2}+O_{2}\rightarrow 2NaO_{2}}}}
Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:
- K+O2→KO2{\displaystyle ~{\mathsf {K+O_{2}\rightarrow KO_{2}}}}
Озониды содержат ион O−3 со степенью окисления кислорода, формально равной −1/3. Получают действием озона на гидроксиды щелочных металлов:
- KOH+O3→KO3+H2O+O2↑{\displaystyle ~{\mathsf {KOH+O_{3}\rightarrow KO_{3}+H_{2}O+O_{2}\uparrow }}}
В ионе диоксигенила O2+ кислород имеет формально степень окисления +½. Получают по реакции:
- PtF6+O2→O2PtF6{\displaystyle ~{\mathsf {PtF_{6}+O_{2}\rightarrow O_{2}PtF_{6}}}}
Фториды кислорода
Дифторид кислорода, OF2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:
- 2F2+2NaOH→2NaF+H2O+OF2↑{\displaystyle ~{\mathsf {2F_{2}+2NaOH\rightarrow 2NaF+H_{2}O+OF_{2}\uparrow }}}
Монофторид кислорода (Диоксидифторид), O2F2, нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 °C:
- F2+O2→O2F2{\displaystyle ~{\mathsf {F_{2}+O_{2}\rightarrow O_{2}F_{2}}}}
Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O3F2, О4F2, О5F2 и О6F2.
Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония (англ.) OF3+. Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.
Кислород поддерживает процессы дыхания, горения, гниения.
В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O2 переходит в O3.
Виды кислородных концентраторов
Существует несколько видов кислородных концентраторов, они классифицируются в зависимости от производительности (мощности), типа исполнения и сферы применения. Согласно типу исполнения аппараты разделяются на портативные и стационарные. По сфере применения устройства могут быть для домашнего и клинического использования, а также универсальными.
Медицинские концентраторы кислорода применяются в салонах машин скорой помощи, санаториях, пансионатах и больницах. Приспособления могут предназначаться для разных целей: оказания неотложной помощи; длительной оксигенотерапии при болезнях сердца и легких. В отделениях терапии и операционных используются стационарные аппараты, производительность которых равна 5-10 литров в минуту. В машинах скорой медицинской помощи устанавливаются портативные концентраторы кислорода.
Универсальные аппараты со средней мощностью от 1 до 5 литров в минуту могут использоваться в домашних и стационарных условиях, также их оборудуют в:
- санаториях;
- фитнес-центрах;
- салонах красоты.
Устройства используются как с целью профилактики, так и для непосредственного лечения. Концентраторы для домашнего использования отличаются небольшим показателем производительности (до 3 литров в минуту). Они небольших размеров и ими удобно пользоваться. С помощью кислородного концентратора можно приготовить кислородный коктейль или провести профилактическую ингаляцию дома.
Получение
В настоящее время в промышленности кислород получают из воздуха.
Основным промышленным способом получения кислорода является криогенная ректификация.
Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.
В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.
Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:
-
- 2KMnO4→K2MnO4+MnO2+O2↑{\displaystyle {\mathsf {2KMnO_{4}\rightarrow K_{2}MnO_{4}+MnO_{2}+O_{2}\uparrow }}}
Используют также реакцию каталитического разложения пероксида водорода Н2О2 в присутствии оксида марганца(IV):
-
- 2H2O2 →MnO2 2H2O+O2↑{\displaystyle {\mathsf {2H_{2}O_{2}\ {\xrightarrow {MnO_{2}}}\ 2H_{2}O+O_{2}\uparrow }}}
Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:
-
- 2KClO3→2KCl+3O2↑{\displaystyle {\mathsf {2KClO_{3}\rightarrow 2KCl+3O_{2}\uparrow }}}
К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):
-
- 2HgO→2Hg+O2↑{\displaystyle {\mathsf {2HgO\rightarrow 2Hg+O_{2}\uparrow }}}
На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:
-
- 2Na2O2+2CO2→2Na2CO3+O2↑{\displaystyle {\mathsf {2Na_{2}O_{2}+2CO_{2}\rightarrow 2Na_{2}CO_{3}+O_{2}\uparrow }}}